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Abstract

This paper considers incentives to provide goods that are non-excludable along social or geographic links.
We find, first, that networks can lead to specialization in public good provision. In every social network there
is an equilibrium where some individuals contribute and others free ride. In many networks, this extreme is the
only outcome. Second, specialization can benefit society as a whole. This outcome arises when contributors
are linked, collectively, to many agents. Finally, a new link increases access to public goods, but reduces
individual incentives to contribute. Hence, overall welfare can be higher when there are holes in a network.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This paper builds a network model of public goods. We examine the incentive to provide goods
that are non-excludable along social or geographic links. Examples include several classic public
goods. When a person plants a garden, her neighbors benefit. When a jurisdiction institutes a pol-
lution abatement program, the benefits also accrue to nearby communities. Our primary working
example in this paper is innovation. Individuals innovate—e.g., experiment with new technology
or generate new information—and the results are often non-excludable in certain dimensions. We
see this public goods nature of innovation and information in many areas of economics. Con-
sumers benefit from research of friends and family into new products (e.g., [23]). In medicine
and other technical fields, professional networks shape research patterns (e.g., [18,14,37]). In
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agriculture, one farmer’s experience with a new crop can benefit other farmers, and the phys-
ical and social geography of the countryside can influence experimentation and learning (e.g.,
[24,19,35]). In industry, it has been long posited that research findings spillover to other firms.
Information spread is often local and thus can depend on social networks and the geography of
industry and trade (e.g., [33,13,31]). In all these settings, social structures and geography can
influence the incentive to innovate.

The local nature of public goods and spread of information raises a new set of research
questions. How does the social or geographic structure affect the level and pattern of public
good provision? Do people exert effort themselves or rely on others? How do new links—links
between communities or firms, for example—affect contributions and welfare?

This paper builds a model to address these questions. There is fixed social/geographic structure.
People desire a good which is costly to produce. This good is non-excludable among linked
individuals. Individuals decide how much to contribute to this good, knowing the good is non-
excludable in this way.

Our analysis yields three main insights.
First, networks can lead to specialization. In any network there is an equilibrium where some

individuals contribute to the public good and others completely free ride. In many networks,
this extreme is the only equilibrium outcome. In all networks, such patterns are the only stable
outcomes. Hence, agents’ positions in a network can determine whether or not they contribute to
the public good.

Second, specialization can have welfare benefits. This outcome arises when contributors are
linked, collectively, to many people in society.

Finally, new links can reduce overall welfare. A new link increases access to the new informa-
tion/public good, but also reduces individual incentives to contribute. Hence, overall welfare can
be higher when there are holes in a network.

This paper contributes to several research areas.
First, it introduces the first network model of public goods. We motivate our model with

innovation and information. The model applies to any good that is non-excludable in a geographic
or social dimension. Related work includes [21] who study public goods in interconnected ethnic
communities. Bloch and Zenginobuz [9] examine local public goods with geographic spillovers
across jurisdictions. We study the provision of a public good embedded in a general network
structure. 1

Second, the paper advances a new model of innovation and social learning. The two key
elements of our paper—the generation of new information and social networks—do not appear
together in existing social learning theory. 2 In our analysis, individuals must pay a cost to gain
new information—that is, private signals are not free. In addition, this new information is a public
good among linked individuals. The model thus considers strategic experimentation, as in [24,10]

1 There is a large literature on local public goods, i.e., public goods that are accessible only to residents of a jurisdiction.
Models typically involve individuals choosing where to locate knowing that everyone in the same jurisdiction benefits
from the same level of public good. In our model, there is no location choice. Rather, individuals can have access to
different levels of the public good depending on their position in the network and on the contributions of their direct
neighbors.

2 For review of the social learning literature see [8,17]. Only a few papers consider social networks: Bala and Goyal
[2,3] and Cowan and Jonard [20] model agents learning the choices and payoffs only of linked individuals.
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who consider individual incentives to innovate when results are shared by others. 3 Our innovation
is the social network.

Finally, this paper contributes to the economic theory of networks. 4 We consider a game where
agents take actions that are substitutes with their neighbors’ actions. Our analysis will apply to
any such setting. 5 We relate the Nash equilibria and the stable equilibria of this game to a graph-
theoretic notion—maximal independent sets. An independent set of a graph is a set of agents
such that no two agents who belong to the set are linked. We show that maximal independent sets
are a natural notion in network strategic-substitutes games. Because of strategic substitutability,
agents who specialize cannot be linked to each other in equilibrium. Hence, they constitute an
independent set. We show that equilibria where some agents contribute and other agents free ride
always exist and correspond to this structural property of a graph. Moreover, only these equilibria
are stable.

The paper is organized as follows. In the next section, we present the model and in Section 3,
we study the Nash and stable equilibria of the game. In Section 4, we study economic welfare
for a given graph, and in Section 5 we ask how changing the graph structure can affect welfare.
In Section 6, we discuss the robustness of our findings to changes in the model’s specifications.
Section 7 concludes.

2. The model

2.1. Public goods in a network

There are n agents, and the set of agents is N = {1, . . . , n}. Let ei ∈ [0, +∞) denote agent i’s
level of effort. E.g., ei could be the amount of land dedicated to a new crop, as in [24], or ei could
be the amount of time a consumer spends researching a new product. We assume the individual
marginal cost of effort is constant and equal to c. Let e = (e1, . . . , en) denote an effort profile of
all agents.

Agents are arranged in a network, which we represent as a graph g, where gij = 1 if agent j

benefits directly from the results of agent i’s effort, and gij = 0 otherwise. We assume that results
flow both ways so that gij = gji . Since agent i knows the results of his own effort, we set gii = 1.
Let Ni denote the set of agents that benefit directly from agent i’s efforts, called i’s neighbors:
Ni = {j ∈ N\i : gij = 1}. Let ki = |Ni | denote the number of agent i’s neighbors. Agent i’s
neighborhood is defined as himself and his set of neighbors; i.e., i ∪ Ni .

We make two important assumptions concerning the substitutability of agents’ efforts. First, an
agent’s effort is a substitute of the efforts of her neighbors, but not of individuals further away in
the graph. We make this assumption for simplicity and because it reflects findings that information

3 Foster and Rosenzweig [24] document the public goods nature of experimentation in their study of high-yield varieties
in India. Bolton and Harris [10] study dynamics of experimentation—how early experimentation leads to more or less
future experimentation.

4 Much work on networks considers the properties of equilibrium networks. For a review see [22]. Research in specific
economic settings includes coordination [38,12], job market networks [11,16] and firms [34,29].

5 Recently [4,5,27] have developed results that apply to our setting. Ballester and Calvó-Armengol [4], Ballester et al.
[5] focus on situations where the equilibrium is unique. Galeotti et al. [27] study different informational assumptions.
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does not travel more than one or two steps in a network [25]. 6 Second, a neighbor’s effort is a
perfect substitute with one’s own. (We relax this assumption in Section 6.) With these assumptions
an agent i derives benefits from the total of his own and his neighbors efforts.

We assume each agent receives benefits from own and neighbors’ effort according to a (twice-
differentiable) strictly concave benefit function b(e) where b(0) = 0, b′ > 0 and b′′ < 0. With
our assumptions above, an individual i has benefits b(ei +∑

j∈Ni
ej ).

An agent i’s payoff from profile e in graph g is then

Ui(e; g) = b

⎛
⎝ei +

∑
j∈Ni

ej

⎞
⎠− cei .

To fix ideas for these payoffs, consider the following discrete example. Suppose agents want to
know the best production technique. There are many techniques, each with a different unknown
value of output. The values are distributed according to a distribution F . Let ei be the number of
i’s draws, at cost c per draw. 7 Agent i’s final information set consists of ei +∑

j∈Ni
ej trials of

different technologies. When all trials are independent, the expected benefit is the expectation of
the first-order statistic of e trials. The benefits b(e) are then increasing and concave in e.

In Section 6, we discuss the robustness of our findings to alternative specifications of the
payoffs, including convex costs. A main interest of our simple quasi-linear form (besides its
analytic tractability) is that it allows us to focus on network structure.

2.2. Strategic interaction

We specify the following game. Given a structure g, agents simultaneously choose effort levels.
For a profile e, each agent i earns payoffs Ui(e; g). We analyze pure strategy Nash equilibria,
as there are no mixed strategy equilibria. 8 In the following analysis, we explore how network
structure influences the equilibrium effort levels.

3. Equilibrium contributions to public goods in a network

3.1. The shape of equilibrium profiles

We first characterize the Nash equilibria. Let e∗ denote the effort level at which, to an individual
agent, the marginal benefit equals its marginal cost; b′(e∗) = c. 9 Let ei = ∑

j∈Ni
ej be the total

effort of i’s neighbors.
A profile e is a Nash equilibrium if and only if for every agent i either (1) ei �e∗ and ei = 0 or

(2) ei �e and ei = e∗ − ei . The argument is straightforward. Agents want to exert effort as long

6 The methods we develop here can be extended to diffusion of more than one step. Suppose that efforts benefit agents

k steps away in the graph. Define the graph g(k) as follows: g
(k)
ij

= 1 if i and j are less than k-step apart in g, and
0 otherwise. Under the assumption that agents can discern redundant contributions, k-step diffusion on the graph g is
formally equivalent to 1-step diffusion on g(k) and our analysis directly extends. Decay along links would change the
analysis, as effort exerted in one part of the graph eventually reaches all agents in the graph.

7 For simplicity, the agent is making these draws with replacement.
8 Since the benefit function b(.) is concave and costs are linear, an agent would always earn higher expected payoffs by

playing the average of a set of effort levels than a mixture over the set of effort levels. Hence, there is no Nash equilibrium
where an agent plays a mixture of effort levels.

9 Given b(.) is strictly concave, a level of search e∗ > 0 exists and is well-defined as long as b′(0) > c.
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(a) (b) (c)

Fig. 1. Equilibria in basic graphs with four agents.

(c)(a) (b)

Fig. 2. Equilibria in local interaction graph.

as their total benefits are less than b(e∗). Thus, if the benefits they acquire from their neighbors
are more than b(e∗), they exert no effort. If the benefits are less than b(e∗), they exert effort up to
the point where their benefits equal b(e∗).

In this game, effort levels are strategic substitutes. The more effort an agents’ neighbors exert,
the less an agent exerts himself. We say a profile e is specialized when every agent either exerts
the maximum amount of effort e∗ or exerts no effort; for all agents i either ei = 0 or ei = e∗. We
call an agent who exerts e∗ a specialist. We say a profile e is distributed when every agent exerts
some effort; for all agents i, 0 < ei < e∗. Hybrid equilibria fall between these two extremes.

The following example illustrates different kinds of Nash equilibria. Note that in many figures
we set e∗ = 1 for ease of exposition.

Example 1. Nash equilibria. Fig. 1 shows the complete graph, the circle, and the star for four
agents. In the complete graph, in any equilibrium, aggregate effort is e∗, and it can be split in
any way among the agents. E.g., effort could be equally distributed, so that each agent exerts
1
4e∗, or one agent could be a specialist, as in panel (a). On the star, only specialized profiles are
equilibria. There are just two Nash equilibria: either the center is a specialist, or the three agents at
the periphery are specialists, as shown in panel (b). Finally, on the circle, effort can be distributed
among the agents, or concentrated among specialists, as shown in panel (c). Fig. 2 shows a local
interactions graph. For any agent, in any equilibrium, there must be at least an aggregate effort of
e∗ in the agent’s neighborhood. Effort could be equally distributed, so that each agent make some
contribution, as in panel (a). Agents can also be specialists, and other agents completely free ride,
as in panel (b). Finally, in hybrid equilibria, some agents specialize, some agents make smaller
contributions, and other agents free ride, as shown in panel (c).
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3.2. The existence of Nash equilibria: specialized profiles and independent sets

In this section we show that for every graph there exists a specialized equilibrium. 10 Our proof
is constructive and provides a method to find all specialized equilibria in general graphs.

We use a concept from graph theory—maximal independent sets. An independent set I of a
graph g is a set of agents such that no two agents who belong to I are linked; i.e., ∀i, j ∈ I such
that i �= j , gij = 0. An independent set is maximal when it is not a proper subset of any other
independent set.

We use the following properties of maximal independent sets. Given a maximal independent
set I , every agent either belongs to I or is connected to an agent who belongs to I . 11 Thus, we can
partition the population into two disjoint sets of agents: those who belong to maximal independent
set I , and those who are linked to an agent in I . For any agent i, there exists a maximal independent
set I of the graph g such that i belongs to I . 12 Mathematicians and computer scientists have
derived several results concerning maximal independent sets which we do not use here but could
be useful in applications (see e.g. [32]). 13

Given a graph g, define a maximal independent set of order r as a maximal independent set I

such that any individual not in I is connected to at least r individuals in I . That is, for a maximal
independent set of order r , agents outside the set can have more than r , but no less than r ,
connections to agents in the set. The case r = 1 simply corresponds to maximal independent sets.
While every graph contains maximal independent sets, not all graphs contain maximal independent
sets of higher order. (For example, in the complete graph, there is no maximal independent set of
order r = 2).

Maximal independent sets are a natural notion in our context. Because efforts are strategic
substitutes, in equilibrium no two specialists can be linked. Hence, specialized equilibria are
characterized by this structural property of a graph:

Theorem 1. A specialized profile is a Nash equilibrium if and only if its set of specialists is a
maximal independent set of the structure g. Since for every g there exists a maximal independent
set, there always exists a specialized Nash equilibrium.

Proof. All proofs are provided in the Appendix.
The next example illustrates the concept of maximal independent sets and the relationship to

specialized equilibria. We use the basic graphs in Figs. 1 and 2.

10 There exists a Nash equilibrium profile for any social structure. It is easy to show that the best-response function is
continuous from the compact convex set {e ∈ Rn : ∀i, 0�ei �e∗} to itself. The result follows from Brouwer’s Fixed
Point Theorem.

11 To see this, suppose not. Let I be a maximal independent set, and let i be an agent who does not belong to I and is
not connected to any agent who belongs to I . Then the set I ∪ {i} is an independent set, and hence I is not maximal.

12 To see this, note that i itself is an independent set. To build a maximal independent set, begin with i and successively
add agents not linked to i, then agents not linked to those agents, etc.

13 In particular, with n nodes, the number of maximal independent sets is (weakly) lower than 3n/3. There exists an
algorithm that lists all maximal independent sets of a graph running in time O(3n/3), where an algorithm runs in time
O(h(n)) if there exists a constant K such that the algorithm gives the answer with at most Kh(n) operations. Hence, listing
all maximal independent sets can be done in exponential time, but not in polynomial time. The problems of finding the
largest and the smallest maximal independent sets are both NP-hard. The first of these two problems has been well-studied.
For instance, there exists an algorithm that finds the largest independent set of a graph in time O(20,276n). There exist
algorithms and results for specific families of graphs (trees, bipartite, etc.). The size of the largest maximal independent
set is always greater than or equal to

∑
i∈N

1
ki+1 .
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Example 2. Specialized equilibria and maximal independent sets. In a complete graph, an inde-
pendent set can include at most one agent. Hence, for n = 4 there are four specialized equilibria,
corresponding to each agent. On the star, there are two maximal independent sets: the agent at
the center, and the three agents in the periphery. These two sets correspond to the two special-
ized equilibria (and only equilibria) for the star. In the circle, there are two maximal independent
sets, each containing two agents on opposite sides of the circle. Again, these two sets correspond
to the specialized equilibria for the circle. We can again see a maximal independent set in the
overlapping neighborhood graphs in panel (b) of Fig. 2.

3.3. Equilibrium selection: stable Nash equilibria

For any graph, there are potentially many Nash equilibria—ranging from specialized to distri-
buted. 14 In this section, we consider stable equilibria. We use a simple notion of stability based
on Nash tâtonnement, see e.g. [26]. We use this concept because it applies directly to games with
continuous action spaces, and because it indeed reduces the number of equilibria in our setting in
a natural way. Define fi(e) as the best-response of individual i to a profile e and define f as the
collection of these individual best-responses f = (f1, . . . , fn). An equilibrium e is stable if and
only if there exists a positive number � > 0 such that for any vector ε satisfying ∀i, |�i |�� and
ei + �i �0 the sequence e(n) defined by e(0) = e + ε and e(n+1) = f(e(n)) converges to e.

This standard notion yields a strong result. Only specialized equilibria are stable. This result
rests on the strategic substitutability of efforts of linked agents. Consider an equilibrium where
everyone exerts some effort, and decrease the effort of an individual i by a small amount. His
neighbor(s) will adjust by increasing their own efforts. This increase can lead i to reduce his
effort even more. In this case, the initial equilibrium is not stable. This process does not work
in specialized equilibria when every agent j who exerts no effort is linked to two specialists. If
we reduce the effort of these specialists, agent j will not adjust. He has access to two sources of
information, and a small reduction will not lead him to increase his own effort.

Stable profiles thus correspond to maximal independent sets of order 2. Given a graph g, we
show a stable equilibria exists if and only if there is a maximal independent set of order 2.

Theorem 2. For any social structure g, an equilibrium is stable if and only if it is specialized
and every non-specialist is connected to (at least) two specialists. Hence, there exists a stable
equilibrium in a graph g if and only if it has a maximal independent set of order 2.

The following example illustrates.

Example 3. Stable equilibria. Consider the star graph with four agents in Fig. 1, and consider
the Nash equilibrium where the center exerts e∗ and peripheral agents exert no effort. The set
of specialists is not a maximal independent set of order 2. In contrast, consider the equilibrium
where all peripheral agents exert effort. This equilibrium is stable, as the set of specialists is a
maximal independent set of order 2.

4. Welfare analysis

In this section we consider the welfare of different allocations of effort. We show that not only
are specialized equilibria the only stable outcomes, they also can yield the highest welfare.

14 We show in Section 6 that multiplicity of equilibria is robust to alternative specifications of the model.
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4.1. Definition of welfare

To gain a basic understanding of welfare, we take a standard utilitarian approach. We specify
social welfare of profile e for a graph g as the sum of the payoffs of the agents:

W(e; g) =
∑
i∈N

b (ei + ei) − c
∑
i∈N

ei,

where recall ei is the sum of the efforts of i’s neighbors.

4.2. Efficient allocations

We say a profile e is efficient for a given structure g if and only if there is no other profile e′
such that W(e′; g) > W(e; g). Since the welfare function is concave, in an efficient profile, for

any individual i such that ei > 0, we must have �W(e;g)

�ei
= 0; that is, for all ei > 0

b′(ei + ei) +
∑
j∈Ni

b′(ej + ej ) = c, (1)

where the left-hand side is the marginal social benefit from i’s effort. In an efficient profile where

an agent i does no effort (ei = 0) we must have �W(e;g)

�ei
�0.

We can characterize efficient profiles for some important graphs. Consider regular graphs (i.e.,
graphs where each player has the same number of neighbors k, and the number of neighbors is
called the degree of the graph). On a regular graph of degree k, we find there is always an efficient
profile where each agent does the same amount of effort e where e satisfies b′((k + 1)e) =

c
(k+1)

. Each agent benefits from his own and his neighbors effort—hence each agent has benefits
b((k + 1)e). And the marginal cost per individual is c

(k+1)
. For example, in a circle with n

agents, e satisfies b′(3e) = c
3 . This allocation of effort solves the first-order conditions of welfare

maximization. By concavity of welfare, it must be efficient.
In non-regular graphs, some agents might not contribute to the public good in the efficient

allocation. Indeed, for a class of graphs that includes the star, we find that efficient profiles
involve some agents exerting no effort. Consider any graph where one agent’s neighborhood is a
strict subset of another agent’s neighborhood. In this case, the agent with smaller neighborhood
should do no effort. For any graph g with two individuals i and j such that i ∪Ni�j ∪Nj , ei = 0
in any efficient profile. 15

While these profiles maximize social welfare, individuals, acting non-cooperatively, will never
choose these effort levels. No Nash equilibrium profile is efficient. We can see this outcome easily
by comparing the efficiency condition (1) with the Nash equilibrium conditions above, where an
individual considers only his own marginal benefits of effort and sets b′(ei + ei) = c.

We illustrate the difference between efficient and equilibrium allocations in our next example.

Example 4. Efficient vs. equilibrium allocations. Consider the graph in Fig. 3, which represents
two connected communities. Sociologists (e.g., [30,15]) have argued that links, or bridges, be-
tween communities increase opportunities for learning. Typically this literature does not consider

15 Take a profile e such that ei > 0. Define a new profile e′ such that e′
i

= 0, e′
j

= ei + ej and e′ = e otherwise.

Then, W(e′) > W(e). Total costs are the same, but social benefits are strictly greater for e′ since j ’s effort reaches more
individuals in the population.
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(a) (b)

Fig. 3. Efficient vs. equilibrium allocations.

the incentives to generate new information. This example shows the negative effects of links when
these incentives are important. In the efficient allocation, the agents who link the communities
make all the contributions to the public good, as in (a). The neighborhoods of all other agents
are subsets of these two agents’ neighborhoods. Condition (1) implies that they both exert effort
e such that 3b′(e) + 2b′(2e) = c. The set of Nash equilibria, however, does not include this
allocation. In equilibrium, at least one of the central agents does zero effort, as shown in panel
(b), and, hence, the effort level of e∗ must be distributed among the other agents in at least one
community.

4.3. The “best’’ Nash equilibria

While no Nash equilibrium is efficient, here we ask which Nash equilibria yield highest welfare.
We develop a method to compare the welfare of different equilibrium profiles. Recall, in any
equilibrium, each agent has benefits of at least e∗ effort. Hence, nb(e∗) is the minimum aggregate
benefits in any equilibrium. In equilibria where some agents do not exert effort but rely on
specialists, these agents have the benefits of more than e∗ effort. Their benefits are equal to∑

j :ej =0 [b(ēj ) − b(e∗)] where the summation is over all agents j who do not exert effort. We
can therefore express the welfare of an equilibrium e as the sum of three terms:

W(e; g) = nb(e∗) +
∑

j :ej =0

[b(ēj ) − b(e∗)] − c
∑

i

ei , (2)

where the second term is the benefit premium that can arise from specialization.
In (2), we see a trade-off between benefit premia and effort costs. Distributed equilibria yield no

benefit premia. Specialization yields benefit premia but at possibly higher cost. When the trade-off
favors the benefit premia, specialization can yield higher welfare. The resolution of this trade-off
depends on the benefits of information above e∗, embodied in the premium

∑
j :ej =0[b(ēj )−b(e∗)].

The size of this premium depends on the effort and location of specialists, and on the shape of the
benefit function above e∗.

We can describe the shape of the benefit function as follows 16 : If b tends to be flat above
e∗, benefit premia have close to zero value. Equilibria with the highest welfare are simply those
with lowest total effort. The benefit premium is largest when b tends to be steep above e∗ (that
is, its slope does not fall much below c). Equilibria with high levels of total effort may then be
beneficial; the benefit premium can outweigh the additional cost.

16 Since we want to compare equilibria, and equilibria only depend on e∗, the different benefit functions we consider
always satisfy b′(e∗) = c.
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To understand this possibility more precisely, we introduce the following measure of the benefit
function. Let

� = b(ne∗) − b(e∗)
c(n − 1)e∗ .

Since b is increasing and concave, � lies between 0 and 1. When � is close to 1, the slope of
benefit function above e∗ does not fall by much; the slope of the benefit function is close to c.
This measure derives solely from the benefit function and is independent on the graph. We can
thus use it to compare equilibria in any given graph.

When � is close to 1, we find that welfare simply depends on the sum of total effort that accrues
to agents from others in the network. That is, welfare depends only on

∑
i kiei , where, recall, ki

represents the number of neighbors of i. This quantity is a linear approximation of the difference
between benefit premium and effort costs when � is close to 1. For high �, welfare is higher when
agents gain much from their neighbors’ efforts.

We thus have:

Proposition 1. Consider a graph g and two Nash equilibria e1 and e2 on g. There exists a �H < 1
such that for any benefit function satisfying b′(e∗) = c and � > �H , W(e1; g) > W(e2; g) if∑

i kie
1
i >

∑
i kie

2
i .

To illustrate, we compare welfare of equilibria on a circle.

Example 5. Comparing welfare of Nash equilibria. Consider a circle with n agents, where n

is even. Consider the specialized equilibria where alternate agents exert effort e∗, as shown for
n = 4 in the right side of panel (c) in Fig. 1. We compare these equilibria to any other equilibrium
for this graph. In the specialized equilibrium we specified, the sum

∑
i kiei is ne∗. In any other

equilibrium, this sum is lower. For example, in distributed equilibria, this sum is 2ne∗
3 . Applying

Proposition 1, we obtain that, if � is high enough, the specialized equilibrium yields greater
welfare.

Hence specialization can be beneficial in equilibrium. Since individual efforts are strategic
substitutes, there is a limit to the level of total effort sustainable in equilibrium. When agents
specialize, more effort is sustainable.When specialists are well-located in the graph, social benefits
increase through the benefit premium. When � is higher, the benefit premium outweighs the
additional costs.

5. Positive and negative effects of new links

In the previous section, we considered which Nash equilibria yielded the highest overall welfare.
In this section we ask how changes in graph itself affect welfare. We examine the welfare effects
of adding a new link to a given graph. A new link has two, countervailing, effects. A link allows
for greater access to the public good. But an agent with greater access also has less incentive to
exert own effort. We show that this disincentive can lead to a loss in welfare.

We consider changes in the set of Nash equilibria when we add a new link. We could modify the
analysis to consider changes in the set of stable equilibria, and similar insights obtain. We say an
equilibrium profile e is second-best for a given graph g if and only if there is no other equilibrium
profile e′ such that W(e′; g) > W(e; g). Consider a graph g and two agents i and j who are not
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(a) (b) (c)

Fig. 4. Connecting two stars.

(a) (b) (c)

Fig. 5. Increasing integration.

linked in g. Denote by g + ij the graph obtained by connecting i and j in g. We say that the
link leads to a “loss in welfare”when the second-best level of welfare for graph g + ij is lower
than that for g. Let e be a second-best equilibrium profile for the social structure g. There are two
cases. First, in e, either i or j does not exert effort. In this case, e is also an equilibrium for g + ij

and hence W(e; g + ij)�W(e; g). Second, in e, both i and j exert effort. In this case, e is not
an equilibrium for the structure g + ij . Adding a link between the two destroys the equilibrium
pattern. When effort by both agents is required to secure high aggregate benefits, the new link can
lead to a loss in welfare.

Hence, a necessary condition for a loss in welfare from linking i and j is that both agents exert
effort in all second-best equilibrium profiles on g.

We illustrate the positive and negative effects of a new link in the following example.

Example 6. Positive and negative effects of new links. Consider the two stars in Fig. 4 panel
(a). The figure shows the unique second-best equilibrium pattern—both centers are specialists.
Connecting a peripheral agent to the center of the other star, Fig. 4 panel (b), does not disrupt
the equilibrium. The link thus increases welfare. Connecting the two centers, Fig. 4 panel (c),
destroys the equilibrium pattern and thus can decrease welfare. With the link between the two
centers, the second-best equilibrium profiles involve the center of one star and peripheral agents of
the other star as specialists. Welfare falls if the increased costs exceed the added benefit premium:
2ce∗ > b(4e∗) − b(e∗). This is guaranteed if � is low enough. In the local interactions graph
in Fig. 5, we depict second-best equilibria when � is high enough, so specialized equilibria are
second-best. In (a), each agent has two neighbors, and alternate agents are specialists. In (b), each
agent has four neighbors. Costs fall and the benefit premium increases, because one more agent
has access to two sources of information. Welfare increases. The graph is complete in (c) and
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welfare falls. There can be at most one specialist; there is no possibility of a benefit premium.
Hence, welfare can be higher when the graph is not complete.

6. Robustness of results

Our main insights carry over to three changes in the model’s specifications: imperfect substi-
tutes, convex costs, and agent heterogeneity. Specialization may emerge in equilibrium and has
similar implications for welfare. In each case we extend Theorem 1, relating specialized equilibria
to maximal independent sets in a graph.

Imperfect substitutability of efforts: First, we consider that an individual’s own effort could be
more beneficial to himself than to his neighbors. Let benefits equal b(ei + �

∑
j∈Ni

ej ) where
0 < ��1 measures the extent to which own efforts and neighbor’s efforts are substitutes. With this
specification, we can apply Theorem 1 in [5] who study network games with quadratic utilities. 17

On any graph if � is low enough, there exists a unique Nash equilibrium and in this equilibrium
all agents do strictly positive effort. Using our language, there is a unique equilibrium and it is
a distributed equilibrium. Hence, specialization disappears when � is low enough; when efforts
by one’s neighbors have little value, individuals must exert some effort on their own. We show
specialized equilibria exist for higher values of �, where the precise value depends on the order of
maximal independent sets in the graph. When agents have sufficiently many neighbors in a graph
and the graph admits maximal independent sets of sufficiently high order, there exist specialized
equilibria. Theorem 1 generalizes as follows.

Proposition 2. Suppose an agent’s benefits are b(ei + �
∑

j∈Ni
ej ) where 0 < ��1. Let s be

the smallest integer larger than or equal to 1
� . Then, a specialized profile is an equilibrium if and

only if the set of specialists is a maximal independent set of order s of the graph g.

For instance, on the circle when n is even, there are maximal independent sets of order 2. Hence,
there exist specialized equilibria for �� 1

2 . The equilibria involve alternate agents exerting e∗. On
the star, there is a maximal independent set of order n − 1. The profile where all agents at the
periphery are specialists and the center exerts no effort is an equilibrium for �� 1

n−1 .
Specialization still can yield welfare benefits in this case. For example, welfare of specialized

equilibria on the circle is W = nb(e∗)+ n
2 [b(2�e∗)−b(e∗)]−c n

2 e∗. In the distributed equilibrium
where everyone searches 1

1+2�e∗, welfare is equal to W = nb(e∗) − c n
1+2�e∗. We see here the

trade-off between the benefit premium from specialization and the increased search costs.

17 With imperfect substitutability in our game, an individual i’s best-reply function is given by

ei = max

⎛
⎝0, e∗ − �

∑
j �=i

gij ej

⎞
⎠ .

Ballester et al. [5] study a game with bilinear payoffs, where the best-reply function is

xi = max

(
0,

∑
j �=i �ij xj + �i

−�ii

)
.

The best-reply functions coincide when �i = e∗, �ii = −1, and �ij = −�gij .
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Convex costs: Suppose in our original game that effort costs c(ei) are increasing and convex and
that c′(0) > b′(+∞). Convex costs would arise, for instance, when individuals allocate resources
between public goods and private good consumption, as in [7]. 18 Convex costs drive the outcome
towards effort sharing. In complete graphs, there is now a unique equilibrium where all individuals
exert the same amount of effort. Specialization can still emerge in graphs that are not complete.
Our equilibrium condition involves again maximal independent sets of higher orders. Theorem 1
extends as follows. Let effort level e∗ still represent how much an isolated individual experiments.
It now satisfies b′(e∗) = c′(e∗).

Proposition 3. Suppose that c(e) is increasing and convex and that c′(0) > b′(+∞). Let s be
the smallest integer such that b′(se∗)�c′(0). Then, a specialized profile is a Nash equilibrium if
and only if the set of specialists is a maximal independent set of order s of the graph g.

As for welfare, specialization still generates a benefit premium. Although convexity of the cost
function makes specialization less attractive, the benefit premium can still outweigh the higher
effort costs.

Heterogeneous agents: Next, suppose that agents can derive different benefits from the public
good and have different costs of effort. Let the benefit functions and cost functions be bi(ei + ēi )

and ciei . 19 We can use many of our techniques to analyze this case. Equilibrium outcomes can
be represented by an idiosyncratic threshold effort level e∗

i such that in equilibrium, ei = 0
when ēi �e∗

i and ei = e∗
i − ēi otherwise. Individuals with higher benefits or lower costs have

higher thresholds. On the complete graph, there is a (generically) unique equilibrium where the
individual with highest threshold exerts all the effort. Heterogeneity thus leads to specialization.
This finding is reinforced on graphs that are not complete. In a specialized equilibrium, the set
of specialists must still be a maximal independent set of the graph. While this condition is not
sufficient, existence is guaranteed on any graph.

Proposition 4. Consider the heterogeneous agent model. All specialized Nash equilibria corre-
spond to a maximal independent set of the graph. There always exists a specialized equilibrium
where the agent with highest threshold is a specialist.

In this heterogeneous agent case, the welfare comparison between different equilibria is, again,
determined by a trade-off between the benefit premium and effort costs.

7. Conclusion

This paper introduces a network model of public goods. In this model, there is a fixed social
structure, and agents choose how much to contribute to a public good when the good is non-
excludable among their linked neighbors.

18 Suppose individuals allocate income y between effort ei and private good consumption xi . Assume separable utility:
ui(e, xi ) = b(ei +ēi )+a(xi ). With private good’s price at 1, public good’s price at p, the budget constraint is xi +pei = y.
The marginal cost of effort is then pa′(y − pei) and is increasing in ei .

19 Heterogeneity can arise from a simple model of impure altruism. Suppose individual i obtains a ‘warm glow’ [1] of
mei for each neighbor that benefits from her experimentation ei . This gain effectively lowers i’s marginal cost of c−kim.
Individuals with more links earn greater pleasure from generating new information and, hence, have lower effective costs
of experimentation.
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Our analysis could potentially guide empirical work. There is a growing field in economics
studying innovation and diffusion of information, 20 and there are many studies that suggest that
social structures affect experimentation and spread of information. 21 Our analysis suggests that
individuals who have active social neighbors should have high benefits but exert little effort.
We also expect individuals who have prominent social positions to bear less of the effort costs,
and instead to rely on others’ efforts. Thus our model indicates the importance of strategic and
network efforts. For instance in the study of new crop adoption in developing countries, it would
be important to investigate the strategic effects as in [24] in the context of network data of the
type collected in [19].

Future theoretical research could investigate network formation and how information transmis-
sion feeds back into the evolution of social links. In our analysis, we look at existing networks;
channels of information transmission are already in place when the need for new information
appears. Thus, our setting is probably more appropriate to understand short-run patterns of ex-
perimentation and information diffusion within established networks. Looking at the long-term
formation and evolution of networks is a promising avenue for future research.
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Appendix

Proof of Theorem 1. See Proposition 2 with � = 1. �

Proof of Theorem 2. Recall, f(e) denotes best-responses to profile e, where fi(e) = max(e∗ −
ēi , 0). Our proof relies on the following lemma.

20 There is a growing empirical interest in social learning, and a new set of papers attempts to identify network effects
on technology adoption [6,19,35].

21 Foster and Rosenzweig [24] find evidence that information is a public good and that people free ride; the level
of experimentation is less than is socially optimal. In industrial organization, [33] provides evidence that research and
knowledge spillovers are local, and hence, provides support for our assumption that information is a public good along
geographic and social links. See, also for example, [28] for a descriptive account. People who have extensive knowledge
of the marketplace are usually quite peripheral. Rogers [36] reports similar findings when contrasting the social position
of “innovators,’’ who typically are the first to experiment, to that of “early adopters,’’ who rely on innovators’ experiences
before making their decisions: “early adopters are a more integrated part of the local social system than are innovators,’’
(p. 263).
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Lemma A1. If e�e′, then f ◦ f(e)�f ◦ f(e′).

Proof. Suppose that ∀i, ei �e′
i . Then, e∗ − ēi �e∗ − ē′

i , hence max(e∗ − ēi , 0)� max(e∗ − ē′
i , 0)

and f(e)�f(e′). Applying f again to this inequality yields the result. �

Consider first an equilibrium that is not specialized and denote by J = {j : 0 < ej < e∗}. Let
� > 0 be a small number and define a perturbation ε as follows: ∀j ∈ J, �j = � and ∀j /∈ J, �j =
0. We wish to show that f ◦ f(e + ε)�e + ε. There are three cases. (1) If i is such that ei = 0,
then �i = 0, fi(e + ε) = 0 and fi(f(e + ε))�0 = ei + �i . (2) If i is such that ei = e∗, then �i = 0
and ∀j ∈ Ni , ej = �j = 0. This yields fi(e + ε) = fi(f(e + ε)) = e∗ = ei + �i . (3) Finally,
suppose that i ∈ J . If � is small enough, we have ∀j ∈ J, �̄j �ej , hence fi(e + ε) = ei − �̄i .
Then, fi(f(e + ε)) = ei +∑

j∈J∩Ni
�̄j . Since i has at least one neighbor in J ,

∑
j∈J∩Ni

�̄j ��
hence fi(f(e + ε))�ei + �i . Therefore, f ◦ f(e + ε)�e + ε. By applying the lemma we can see
that for any finite number k, f (2k)(e + ε)�e + ε, which is strictly greater than e. Therefore, the
sequence of best-responses never converges back to e and the equilibrium is not stable.

Consider next a specialized equilibrium e such that i is a non-specialist who is connected to a
unique specialist j . Let � > 0 be a small number and define a perturbation ε as follows: �i = �
and �l = 0 if l �= i. Then, clearly, e(1)

l = el for any l except j and e
(1)
j = e∗−�. Next, e(2)

l = el for
any l except for neighbors of j whose only specialist neighbor is j . These agents, which include
i, all play �. This means that f ◦ f(e + ε)�e + ε and we can apply the same argument as above,
hence this equilibrium is not stable.

Finally, let us prove that specialized equilibria in which every non-specialist is connected to
(at least) two specialists are stable. Take e such an equilibrium, let I be the set of specialists in
e, and let � = 1

n2 e∗. Consider any perturbation ε such that ∀i, |�i | < � and �i + ei �0. First,

determine e(1). For i /∈ I , ē
(0)
i = ēi + �̄i = |Ni ∩ I |e∗ + �̄i . Since |�̄i |�n��e∗, this implies that

ē
(0)
i �e∗, hence e

(1)
i = 0. Despite the perturbation, non-specialists still do no effort. For i ∈ I ,

ē
(0)
i = �̄i , hence e

(1)
i = e∗ − �̄i . Next, determine e(2). For i /∈ I , ē(1)

i = |Ni ∩ I |e∗ −∑j∈Ni∩I �̄j .

Since |∑j∈Ni∩I �̄j |�n2��e∗, we obtain again that e
(2)
i = 0. Finally, for i /∈ I , ē

(1)
i = 0 hence

e
(2)
i = e∗. We showed that f ◦ f(e + ε) = e, hence f (k)(e + ε) = e for all k�2, hence the

equilibrium is stable. �

Proof of Proposition 1. Consider an equilibrium e and i such that ei = 0. Since b is increasing
and concave, we have �c(ēi − e∗)�b(ēi) − b(e∗)�c(ēi − e∗). This means that

�c

⎡
⎣ ∑

i:ei=0

(ēi − e∗) −
∑

i

ei

⎤
⎦+ (1 − �)c

∑
i

ei � W(e, g) − nb(e∗)

� c

⎡
⎣ ∑

i:ei=0

(ēi − e∗) −
∑

i

ei

⎤
⎦ .

In addition,
∑

i:ei=0(ēi −e∗) = ∑
i∈N(ei + ēi )−ne∗. By switching the double summation, we

obtain
∑

i∈N(ei + ēi ) = ∑
i

∑
j gij ej = ∑

j

∑
i gij ej = ∑

j (kj + 1)ej . Substituting yields

�c
∑
j

kj ej + (1 − �)c
∑

i

ei �W(e, g) − n[b(e∗) − ce∗]�c
∑
j

kj ej .
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Hence, as � tends to 1, W(e, G) − n[b(e∗) − ce∗] tends to c
∑

j kj ej . (We consider benefit
functions for which b′(e∗) = c so that equilibria are not affected by changes in �). Therefore, there
exists a threshold �H < 1 such that if � > �H ,

∑
j kj e

1
j >

∑
j kj e

2
j implies that W(e1, g) >

W(e2, g). �

Proof of Proposition 2. Consider a specialized equilibrium where I is the set of specialists.
Specialists play a best-response if all their neighbors exert zero effort. This means that I is an
independent set of the graph. A non-specialist i plays a best-response if �

∑
j∈Ni

ej �e∗ ⇔
|Ni ∩ I |� 1

� ⇔ |Ni ∩ I |�s. This means that all agents not in I are connected to at least s agents
in I . Combining both properties yields the result. �

Proof of Proposition 3. With convex experimentation costs c(ei), individual i’s best-response is
to play 0 if b′(ēi)�c′(0) and to play ei such that b′(ei + ēi ) = c′(ei) otherwise. On the complete
graph, there is a unique equilibrium where the effort of any individual is e such that b′(ne) = c′(e).
In general graphs, consider a specialized equilibrium where I is the set of specialists. Specialists
play a best-response if all their neighbors exert zero effort.A non-specialists i play a best-response
if b′(

∑
j∈Ni

ej )�c′(0) ⇔ b′(|Ni ∩ I |e∗)�c′(0) ⇔ |Ni ∩ I |�s. This yields the result. �

Proof of Proposition 4. Order agents through decreasing thresholds e∗
1 � · · · �e∗

n. Construct a
maximal independent set I as follows. Include individual 1 in I . Then remove 1 and all her
neighbors. Add to I the remaining agent with highest threshold. Then, remove her neighbors and
repeat the operation till no agent is left. The profile where each agent i in I searches e∗

i while
others do no search is a specialized equilibrium. �
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